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ABSTRACT jgul

The problem of determining the free oscillations
of a gravitating solid sphere is investigated. The problem
itself is formulated and, with the assumption of radial
symmetry in the structure of the sphere, the numerical
solution for the case of the toroidal oscillations is de-
scribed in detail. A formal description is given to indicate
the numerical solution of the problem of the spheroidal

oscillations.

I.  INTRODUCTION

There has been considerable recent interest in the theoretical determination of the free oscillations

of the Earth. Seismic data obtained from the Chilean earthquake of 1960, as well as from the Kamchatka

earthquake of 1952, have been analyzed statistically to obtain an experimental determination of the free

oscillations of the Earth (Ref. 1). Correlation of these results with the theoretically calculated free
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oscillations corresponding to a number of hypothetical Earth models has afforded valuable information

regarding the probable internal structure of the Earth.

It is to be expected that many of the seismic techniques which have proved valuable for investigating
the Earth can, with some modification, be applied fruitfully to the investigation of the corresponding lunar
and planetary phenomena. It may be of particular interest to ascertain whether any of these bodies possess
a solid core. As a first step in such an investigation, it appears desirable to be able to determine the free

oscillations of a gravitating solid sphere.

Within the restriction that the assumed structure of the sphere has radial symmetry, there has been
prepared for the Jet Propulsion Laboratory IBM 7090 a program by which the toroidal oscillations of a

gravitating solid sphere can be computed. A program for computing the spheroidal oscillations is in progress.
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FORMULATION OF THE PROBLEM

The stress equations of small motion of any body for which the notion of stress is valid are given

by Love (Ref. 2) in rectangular coordinates

where Uy by and u, denote the components of the displacement vector v in the x, ¥, and z directions

respectively.

X, aXy axX,
+ +
dx oy dz
aY, aY aY
y F4
+ +
ox dy dz
dZ, azy 9z,
+ +
dx dy dz

+ pX

+ pY

it

80

In the case of polar coordinates r, @, and ¢, the corresponding stress equations are (see Ref. 2, p. 91)

~
arr

ar

where u, ug, and Uy

respectively.
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denote the components of the displacement vector u in the r, &, and ¢ directions

1 ~ ~ N ~
+ — @Qr-00-bPrrBcott) + pF =

r

1
+ —_—
r

1
+ — (3r

r

~

~ [}
¢+ 2 B¢ cot 8) + ,OF¢ =

m

~

(66— dPP)cot O+ 3 ro] + pFg=

9%u

2
0“u,

a2

2
ug

a2

¢

At?

(2)



JPL Technical Report No. 32-164

In order to proceed further, some sort of stress—strain relationship must be postulated for the body.

Perhaps the simplest assumption is that the body is an isotropic elastic solid and that one may use Hooke’s

law
0ux aux auy
Xx:?\A+2y—,Yx=Xy=p +
dx dy ox
auy auy Guz
Yy = AN + 24 , Y, = Zy = pu + (3)
dy dz dy
Ju 6ux 8uz
72 = AN + 2 —— Zx = Xz = pu +
dz dz ox
where

du, c?uy du,
A = + + =V U (4)
ox dy dz
If the medium is further assumed to be heterogeneous, so that A, pu, and p are functions of position, then
substitution of Eq. (3) and (4) into (1) gives a result which can be expressed in the vector form
9%y 2 =
p— = pF+ VIA+ IV ou] +pV20-(V.s)Vps+ 2(Vp. @) (5)
at
where
F=iX+ijY +kZ (6)

and ® is the symmetrical strain tensor with components
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du, 1 < du, (9uy > 1 ( du, du, >
— + — +
dx 2 dy ox 2 dz dx

1 < aux auz > 1 < auy Guz > auz
— + —_ | —=+
2 0z ox 2 dz dy dz
If the isotropic elastic medium is assumed to be homogeneous, Eq. (5) becomes

0%y 9
Je 2=,OF+(>\+u)V(V-u)+qu )]
at

In either Eq. (5) or (7), any effect of gravity must be accounted for in some manner in the body forces F.

One approach to take in the treatment of the solid sphere with radial symmetry is to consider that
the sphere is made up of concentric spherical shells, each shell assumed to be homogeneous. Assigning
values to 0, A, and y in each shell, we then require that Eq. (7) be satisfied in each shell, that there be no
stress at the outer surface of the outer shell, and that stress components acting through the boundary and
displacements be continuous at the interfaces between shells. In the case of the toroidal oscillations there
is no radial displacement of the boundaries and, effectively, one may set the F in Eq. (7) equal to zero.
The problem may then be approached using the theory of spherical harmonics (Ref. 3). The author first
attacked the case of the free toroidal oscillations of a radially symmetric solid sphere in this manner and
obtained a formal solution analogous to that obtained for the Karth (liquid core) by Gilbert and MacDonald
(Ref. 4). This solution is not documented in the present paper since the extension of their method to the

case of the spheroidal oscillations is not at all clear.

A more natural way to bring in the effect of gravity is to include it in the stress~ strain assumptions.
A method, devised by lord Rayleigh (Ref. 5) and well elucidated by Love (Ref. 6), views the sphere as being
in a state of initial stress which is regarded as a hydrostatic pressure balancing the self-gravitation of the

body in the initial state; any subsequent displacement is considered to conform to the stress—strain relations
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apo
Xx:—p0+ur

or

apo
Y =-p, +u

0

Y ’ or

P,
Zz:—p0+u

or

du
Xy_zszp +

dy

auy
Yz:Zyz;L +

Jdz

du

x
szXz=,u< +

o0z

where p, is the initial pressure.

Expressed in polar coordinates, the stress—strain

A Py
o=~ py tou

Jr

dp
~ 0
g8 = - Py *+ ¥,

or
9, Py
Fd= - py + u,

or
rd = e
r¢p = T
Hdd = Hegy

aux
+ AA 4+ 2u
ox
auy
+ AA 4+ 2pu
dy
auz
+ AN ¢+ 2p —
Jz
(8)
auy
ox
ou
dy
6uz>
ox
relations (8) become
+ AL+ 2pe,
+ AD + 2 €0
+ AL+ 2 €4 %
(8a)
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\Nh ere

Ju
e -
rr
or
1 du u
A
e = — T s
ro0c r
1 (9ud> u u,
e = 4 —«— cot & +
¢ P
rsin 7 J4 r r
dug ug 1 ou,
e
ar r roodt
1 (3ur (3uqs iy,
e 4 = —— - —
r sin ad Jr r
1 (7u¢ Uy 1 r?uth
€gp = — —— — —— cot £+ — —
ro g r rsin & da
ou 2u Ju
r r 1 d 1 ¢
A= - + — (ugsin )+ ——
ar r rsinf  9F rsinf d¢

The body forces F are assumed derivable from a potential v such that
F-Vu )

The initial pressure p,, the initial density 04, and the initial potential v, all relating to the undisturbed
sphere, are then assumed to be only functions of r, the distance from the center of the sphere. The quantities

Po po, and v, are related by
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8v0 dp,

pg — - —— =0
dx Ox
OUO apo

Py -2 0 (10)
dy dy
dv,, 9Py

Po - — =20
Jz 0z

or

dv, dp,

Py -~ =0 (10a)
or or

In the strained state, the density is assumed given by

9P,
pzpo_ur —poA (11)
ar
and the potential v given by
v o= vy + 14 (12)
where
2
WY v0=-4776,00 13)
90,
V2W = 476G | py b + u, (14)
or
Note that if we write
Jv
0
80 = ~ (15)
ar
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we can replace Eq. (10a) by

apo
= - go p() (10b)
or
and Eq. (13) by
dg 2
L A (13a)
dr r

Substituting Eq. (8) into Eq. (1), making use of (10), (10a), (11), and (12), and neglecting the products of
small quantities of the first orderin u , iy, by A, W, and their derivatives, gives the following result

expressed in vector form:

92 =
Vs )Veu) +pV2u- (Veu) Vs 2(Tp - @)

9Py 9%y
- pov.u+ur Vvo+,o0VW+V urpo (16)
or or

Po
92

If the medium is assumed to have A, y, and o, constant, then Eq. (16) becomes

ov

8%y
0
S V(Y )+ p VR p oy (V-u)Voog + pg VI +pg <% - > a7
r

Po
912

(It may be interesting to compare Eq. (5) and (7) with Eq. (16) and (17), respectively)

Of particular interest are the three scalar equations in polar coordinates corresponding to vector
equation (16). These scalar equations may be obtained by substituting Eq. (8a), (9), (10a), and (15) into
Eq. (2):
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2

Iu, o 9 9 du,
Po 2:p0g0A+p0——p0—(gour)+— AL+ 24

at or or or or

1 4 1 d u
+ — — (peg) + — (pe y) + — (de, — 2e4 - 2e44 + cotOe )
r 968 rsinf do¢ r
(18)
Puyg  p, W I 1 9 19
Po —— = — — + — (ueg) + — — (=85 Py u, + AND +2pepy) + — (pegy)
92 r 96 ar r 46 rsinf8 Jo
du u du
1 ] 6 1 ¢
+ 2 l2coto (— - — cotfd ~ ) + 3e,p (19)
r r 96 r rsinf o¢
Fuy Py w9 19 19
Py —— = —+—(per¢)+——(ye€¢)+ —(—gopour+)\A+2pe¢¢)
92 rsinf o¢ ar r 9o rsinf g¢
3 2
+ il e, g + el cot (9e9¢ (20)
r r

The system of Eq. (13a), (14), (18), (19), and (20) is to be solved subject to the following boundary

conditions:

~ ~ m
G =10 =r =0atr=ga+u

where a is the radius of the sphere before deformation;
{ii) The solution is to be regular at the center of the sphere;

(iii) The sphere’s internal and external gravitational potentials and also their

respective gradients are continuous atr = @ + u,.

10
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If only the first-order terms in the small quantities u, u, and Uy are retained, the boundary

conditions (i) are met by putting

aur
ANA 4 2 —— =0 atr = a (21)
or

€9 = er¢=0 atr = a (22)

The boundary conditions (iii) are similarly met by

= 471G Po U, atr = a (23)
or or

The quantity ¥, which denotes the gravitational potential outside the sphere, can be expressed by

5,(6,8)

+
rnl

where S (6,¢) is a spherical surface harmonic of positive integral degree n. Since each spherical harmonic

component ¥, satisfies

aW n+1
sn
- - ¥
sn
or r
then Eq. (23) can be replaced by

GWn n+1

+ Wn = 471G Po b (23a)
ar a

where ¥ and u_ are the nth spherical harmonic components of ¥ and u_respectively.

n
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[ Boundary conditions (ii) will be discussed subsequently.]

The remainder of our development will assume a radially symmetric sphere and will be confined to
two types of solutions suggested by the work of Hoskins (Ref. 7). In one type of solution, leading to the free

toroidal oscillations, we assume

v(r) a5, (6,8)
ug et7t (24)
sin & o

o) 35, (6,4)
u¢ = €

sin & a6

iot

Note that Eq. (24) gives

A =0 (25)

F =0 (26)

Substituting Eq. (24), (25), and (26) into Eq. (14), (18), (19), and (20), we find that Eq. (14) and (18) are
satisfied identically while Eq. (19) and (20) both give

d2 2 d d d 1
A A A T (AL S P DAL T P (27
dr? r dr dr dr r r2

- — =9 at r = a

12
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The substitutions

dv v
n= v N

lead to the system of equations

dyy 1 1
==t 7
dr r K
(28)
dy, pn?+n-2) 2 3
= =T Pl T Y2
dr 2 r
with boundary conditions
Yo = 0 at r = a (29)
y, is regular at r = 0 (30)
In the second type of solution, leading to the free spheroidal oscillations, we assume
u, = UGS, (6, ) &
a5 (6,4)
uy = V() ——— etot (31)
a0
as_ (6,
u¢ _ Vin "( ¢) eiot
sin & ¢
We then find
A= X()S,(6,4) 7" (32)

13
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where

X - —— + U~ _——_""V (33)

We then write
V= P()S, (6 ¢) &7 (34)

and, substituting Eq. (31), (32), (33), and (34) into Eq. (14), (18), (19), and (20), we obtain the following

system of equations:

9 dP d d dU
Tipo U+ py — + ggPyg X~ pg — (ggU) + — AX+ 2p —

dr dr dr dr
© div dV
+ — | 4r — - AU+ na+ D) (-U-r — + 3V =0
r2 dr dr
d dv U
,000’2Vr+,00P—gO,00U+>\X+r——p. -—————V+— (35)
dr dr r r

+i S5U + 3r d/—V—2n(n+1)V =0
r dr

42 2 dpP 1 dpg
P+____—_n(n+)P=47rG< U+,00x
dr? r dr r dr

Boundary condition (21) gives

dv
2X + 24 — =0 at r = a (36)

dr

14
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while boundary conditions (22) give

dv vV U
p{l—-—+—]=0
dr r r

Boundary conditions (23) give (see Eq. 23a)

dP n+1l
— +

dr a

P = 47rG,00U

The substitutions

dr
73_V
dv vV U
Yo = \— - —+ —
dr r r
75_P
dP
y6=f——4'rer0U
dr

15

at r

at r

a

a

(37)

(38)

(39)
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lead to the system of equations

dy, 2X y, 1 An(n+1) y,
dr (M+2u) r (A+2u) (A+2u) r
dy2 y . 43N+ 2y) Y1 4u Yo

= |-0%pyr*-4pyp 7+t —mMm— | — - ———— —
dr (A+2p) 2 (A+2p) 1

2u(BA+2p)n(n+1) Y3 Ys
+ n(n+1)pogor— —+n(n+l)——p0y6
(A+ 2p) r r
LA N Y3 Y4
dr r r ©
dy, 2u(3A+ 2y) Y1 A Yy
- = gy ,00" [ — e —
dr (A+2p) 2 (A+2p) 1
2p Y3 3)’4
+ —pocr2r2+————[)\(2n2+2n—1)+2p(n2+n—1)] —_ -
(A+ 2p) r? r

dy5
—— =476 Py + ¥
dr
¥ Y3 Ys s

= - 47TGp0n(n+1) — + na(n+1) — -
dr r r2 r
dg, 2

+ — gy = 476 p,
dr r

16

(40)
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with boundary conditions

n+1

y2=y4:0 , Yo + yS:O at r = a 41)
a
¥y» ¥4 and yg are regular at r = 0 (42)
and
gy = 0 at r = 0 (43)
The equation
g, 2
+ — gy = 476G P,
dr r
with boundary condition (43) can be replaced by
1 r
go(r):—~/ 477(;,00r2dr for r > 0
r2 0
(44)
=0 for r = 0

The above formulation closely parallels that of Alterman, Jarosch, and Pekeris (Ref. 8), except that
they were concerned with a sphere with a liquid core. Since there can be no toroidal oscillations in a liquid
core, the condition of regularity at the origin did not have to be met in that case. The equations for the

spheroidal oscillations in the liquid core are easily obtainable from Eq. (40) by setting
[J.ZO, 72:>\xy y4=0

and give rise to a set of four differential equations which include among the boundary conditions the require-
ment that y, and y be regular at the origin. Alterman, Jarosch, and Pekeris (Ref. 8) do not clarify the

manner in which the conditions of regularity were imposed in their numerical solution.

17
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lll.  NUMERICAL SOLUTION OF THE PROBLEM

The chosen method of solving the differential equations — which also satisfies the boundary

conditions — can be illustrated by a consideration of the case of the toroidal oscillations.

By introducing the variable x, where

X = — (45)
a
Eq. (28) becomes
dy, 1 a
= TNt T Y
dx % n
(46)
dy2 u (n2 +n-2) 3
= - a0t oyl ¥y - — v
2
dx ax x
while boundary conditions (29) and (30) become
Yo = 0 at ¥ = 1 (47
¥, is regular at x = 0 (48)

The condition of regularity at the origin means that in the neighborhood of the origin

yl:xs(A0+A1x+---+Akzj‘+---) (49)

where

A0 X 0ands 2 (50)

\
(=7

18
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From Eq. (46), it is seen that

If we now assume that within a sufficiently close neighborhood of the origin u and 0, are constant, say

then we find that the second equation of Eq. (46), along with conditions (50), requires that as long as

n\al,

for {=1,2, 3,

Bo= K

2l —

21+1

]

p0=5 for x < A

(- p a® o)

@)l (2n+3)(2r+5) - (2n+ 2L+ 1)

(51)

(52)

(53)

(54)

Then, as long as n % 1, we have within a close neighborhood of the origin (say, for x < h < hl)

I

1 a? 502"2
Ox" 1- —
2(2n + 3) m
1 25 52,2
4ot (-1) rrT
211 (2n +3)(2n + 5)--r (20 + 20+ 1) "
- 1 25,22
. f_x"’l n-1)- (n+1) ap—x
a 2(2n + 3) I
n +21-1) a2po?y?
4ot (- D p—x
21 (9n+3)(2n+5) - 2n+20+1) u

19

(55)
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which will be abbreviated as

Yy = 4o fy @
{(56)
Yo = Agfy @)
for x < 4.
In the case that n = 1 we see that the set of differential equations (46) is replaced by
dy, 1 a
A U S
dx x n
(46a)
dy, 3
—— = - aclpyy - — Y9
dx x
In this case we obtain
s = 1
a0y
Ay - — (= pa*o®) 1,
@u) 1 (5)(7) - (2 + 3)
Azl =0
forl = 1,2, 3, .-, so that Eq. (53), (54), (55), and (56) also hold forn = 1.
Since the differential equations (46) are linear, their solution for 0 < x < 1, when the initial
conditions are
ylza’ 72=0 at x = 1 (57)
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is given by

y; = @y @

(58)

¥y = @ vh (2

where y, = yl1 (), yq = yg (x) is the solution to Eq. (46) which is obtained by using the initial conditions

y, = Ly, = 0 at x = 1 (59)

Because of boundary condition (47), we know that our initial conditions must be of the form of Eq.

(57) and, assuming our solution is non-trivial, a X 0.

Within the radius of convergence of the power series (55), it is required that the solutions match.

Thus, corresponding to a given & X\ 0, there is a value of AO such that

a ¥l (&)

A9 fi (k)
(60)

ayh (b)) = Ay f, B)

In order that a non-trivial solution exist, Eq. (60) necessitate that for a given non-negative integral value of

n, the value of o must make the following determinant vanish:

Aw B

61)
yLm  f, ®
For each value of n there is a discrete set of values of o which make the determinant (61) vanish. These
sets of values might be referred to as the toroidal frequency spectrum of the structure, where the structure is

defined once o\ and y have been assigned as functions of x and the value of a has been given. The values

of & which make the determinant vanish will occasionally be referred to as the eigenvalues.

21
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Given a structure, the existing JPL IBM 7090 program is capable of generating monotonically the
toroidal frequency spectrum for assigned n and the specified number of eigenvalues desired. The solution for

) and Yo for each eigenvalue, corresponding to the initial conditions (59), is obtained for the interval

0<h23x<1

where the value of 4, is specified and where it is assumed that b, < £; the functions y, and ¥, may be
automatically plotted if desired. As an example, with © and y assumed constant, the first 20 eigenvalues
for n = 2 required approximately 20 minutes of machine time for computation. For each eigenvalue, the
approach is to converge in on a sequence of approximations for o, halving the sum of the previous approx-
imations which makes the determinant (61) change sign. The process is terminated when the values of the

approximation are unchanged up to a specified number of significant figures.

A similar program is being planned to calculate the spheroidal frequency spectrum for an assumed
structure. The approach being followed is similar to that used in the toroidal case, but the problem is more

complicated.

22
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IV. SOME ASPECTS OF THE SOLUTION FOR FREE SPHEROIDAL OSCILLATIONS

Introducing the variable x as defined by Eq. (45), the system of differential equations for the radial

component of the spheroidal oscillations may be written as

dy, 2N ¥ a An{n+1) Y3
= - —— —— + Yo *+ _— (62)
dx (A+ 2u) = {(A+ 2u) (A+ 20) x
d)’z 4 (3 + 2u) Yy dpa Yo
a = —02p002x2-4p0g0ax 4y —_— - —
dx (N+2p) 22 A+ 2u) %
(63)
2u(3A+ 2u)nin+ 1) Y3 Ya
2
+ n(n+1)pog0ax— -——+n(n+1)a——~p0a Ye
(A+ 2u) x? x
dy3 71 Y3 Y4
R (64)
dx x x ©
dy, 2u{3A+ 2u) ¥y Aa Yo
a = | ggroex -~ ——— | — - ——— ——
dx (A+ 2u) x2 (A+ 2u) =
(65)
2p ys 3ayy  Ppaly’
+ —,000'2a2x2+————D\(2n2+2n—1)+2y(n2+u—1)] _— -
(A + 2u) x? x ax
1 dys
— —— = 4G Py, + ¥ (66)
a dx

23
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dy

dx x

where

1 x
gy = — 476G P, ax? dx
x 0

The boundary conditions for the system are

Yo = ¥4 =0 , ¥ +

Y Yy and ¥ are regular

To meet the conditions of regularity (Eq. 70), we assume that in the neighborhood of the origin

<
—
Il

<
w
t

where

24

6 Y3
= - 4Ter0n(n+1) — +

x5 (BO+ le+--~+ ka

k

n(n+1)

4 een

Ys

x

x'(A0+ A1x+—--+ Akxk+~-~)

)

x* (C0+ C1x+---+ Ckxj‘ 4+ 00)

for

for

at

at

2y6

>

(67)

(68)

(69)

(70)

(71)
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Using Eq. (62), (64), and (66) respectively to define ay,, ay, and y in terms ofy,, ¥4 ¥5/a and

their first-order derivatives, we find on substituting Eq. (71) into Eq. (63), (65), and (67) that

r=s=n-1 , t=mn (72)
The assumption that A, p, and P are constant within a small neighborhood of the origin, say
}\=7\,#=;,p0:; for x < hy (73)
leads to
4 —
g0=—7TC,Oax forxg_hl (74)
3

Substituting Eq. (71) into Eq. (63), (65), and (67) and making use of Eq. (72), (73), and (74) leads to

the following set of equations which permit determination of Ak’ Bk’ and Ck as linear functions of AO’ 32 ,

and CO:

1
B. = — A (75)

A = By = C) = 0 (76)

N

25



JPL Technical Report No. 32-164

A2["’l = B2l+1 = C2l+] =0 for [ = 17 2’ 37 ot

{ln+v 20+ D+20-D) N+ 26+ 2D+ 2-D-nlk+1) - 4] g} 4,

~{ln+20-2 X+ r+20- ) p )} nr+1) By,

4 — — 4 —
- <? G pla?yolp a2> /{21_2 + (3 76 p2a2> n(@+1) 821_2
- A Ea2 n+20-2)} Czl_2

{20+ DA+ +20+3) )t Ay - {{nte+ DI XN+ [nt+ D= (@-12n+2D] p } By,

]

4 _ - _
<-?;- 76 p2a2> Agy_g - (p o2a?) Byyg - (o a?) Cor—9

for I = 2,3, -

202 +2+1) Cy = 47 G o [0+ 20+ 1) Ay~ n(n+1) By,] for 1 = 1,2,3, .

In a formal fashion, then, we may write for

x < h <k
Y1 (x) = AO fl (x) + 32 8 (x) + CO hl (x)
Yy (x) = AO f2 (x) + B2 8y (x) + CO h2 (x)

+

ys(x) = A0[3(x) 82 83 (x) + CO h3 (x)

Y, (®) = A0[4(x) + By g, (6) + Cohy (2)
y5(x) = Ay fs (x) + By g (x) + Cp by (x)
Yo () = Ay fo®) + Byge (x) + Cy by (3)
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where, for any specified value of x < / the 18 values of

f}- (x) & (x) }L]. (x) (j =1,2 :+,6)

are capable of being determined.

The most general solution to the system of differential equations {61) through (66) which satisfies

the boundary conditions (69) is given by

Y, = alyll (x) + 2y ¥y (x) + oy ylln (x)

CL3 )/12“ (x)

e
[

it

2
S
)
=
-
+
8
o
e
v =
—~
»
-
+

agyy @)

+
o}
o
R
@«
o~
”
-
+

Yy < alyls(x)

8
Yy © a1y4(x) +a, yLI (x) + Ay yi” (x)
ys © oy vs@ ¢ oy @+ eyl @)

+

Yo = 3, yh@ ¢ ayyd @ o, vl (x)

where the functions y} (x), y}u (x), y}l.” (x);j = 1,2, -, 6, are the respective solutions to the system of
differential equations when the values of (y,. ¥5, ¥4 ¥y Y5 ¥g) 8t x = 1 are taken to be (1, 0, 0, 0, 0, 0),

(0.0,1,0,0,0),and (0,0,0,0, 1, - [n+1]/a).

Imposing the condition that the solution to the system of differential equations must match the

power series expansions at x = h, we obtain the eigenvalues for o by requiring that the determinant
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I
It yllII fl

I Il
Yo Y3 Y [y 8y hy

yf,, 7.!51 7!«1" fy 83 hy
Y}s 7? 7};” fs 84 hy
vs 75 78 f5 &5 ks
Yé yél 7%“ fo 86 e

must vanish at x = A.

Subsequently, the corresponding values of az/aI and as/al can be determined and representative
solutions y, y,, -+-, ¥, can be generated, at least in the interval (A < x < 1), by solving the system of

differential equations with the initial conditions

V. CONCLUDING REMARKS

A future report is planned to give more detail on the program for computing the spheroidal oscillations.
If the numerical solution for the case of the liquid-core sphere is not forthcoming from those who have solved

the problem, a future report will be planned to cover this problem.
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v(r)

V(r)

NOMENCLATURE

radius of sphere before deformation

kth Frobenius coefficient

body forces

gravitational acceleration

gravitational constant

unit vectors in x, y, and z directions
initial pressure

defined by Eq. (34)

distance from center of sphere (polar coordinate system)
indicial constant

spherical surface harmonic

time

components of u in x, y, and z directions
components of v in 7, &, and ¢ directions
displacement vector

defined by Eq. (31)

defined by Eq. (24)

defined by Eq. (31)

perturbation of gravitational potential of sphere
gravitational potential outside sphere
dimensionless radius

defined by Eq. (33)

components of the body forces
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NOMENCLATURE (Cont’d)

A defined by Eq. (4)

8 polar coordinate
A elastic constant
i rigidity
£ density

Py  initial density

o frequency

¢  polar coordinate

g symmetrical strain tensor
Y gradient operator
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